If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+16x-271=0
a = 64; b = 16; c = -271;
Δ = b2-4ac
Δ = 162-4·64·(-271)
Δ = 69632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{69632}=\sqrt{4096*17}=\sqrt{4096}*\sqrt{17}=64\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-64\sqrt{17}}{2*64}=\frac{-16-64\sqrt{17}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+64\sqrt{17}}{2*64}=\frac{-16+64\sqrt{17}}{128} $
| 3z+5=4z–8 | | 3y-3=2y+3 | | 6(t+7)=4(t+2) | | 3y-3=2y-3 | | -2c/5=8 | | 2m/4=6 | | 3y-y=4y | | 4·(x-2)=2x+6x= | | 6x+4=28x= | | 4*(x-2)=2x+6 | | 4q=-27 | | x^2-(10x/3)+1=0 | | 375+0.5x^2)-(375-0.5x^2)=6935 | | (375+0.5x^2)-(375+0.5x^2)=6935 | | c-41/6=97/8 | | 6k/2k=0 | | 64x^2+120x-288=0 | | 4*(x-2)=2x+6 | | (375+0.5x^2)-(375-0.5x^2)=6935 | | 4·(x-2)=2x+6 | | 50=4t+t^2 | | 4·(x-2)=2x+6 | | 50=4t+t66t2 | | 2x+6=7-3x+3 | | 3^-8n=14 | | w-7=25 | | 2*(x^2+4*x+4)=2*(x+2) | | n-18.66=-10.66n−18.66=−10.66 | | 50=90-x | | 16x^2+30x-276=0 | | 40=90-x | | 0.7y=100 |